Commentary: Preconditioning tDCS facilitates subsequent tDCS effect on skill acquisition in older adults
نویسندگان
چکیده
Citation: Opie GM and Cirillo J (2017) Commentary: Preconditioning tDCS facilitates subsequent tDCS effect on skill acquisition in older adults. Long-term potentiation and depression (LTP and LTD) represent powerful means of altering synaptic communication. However, they have an inherent potential to excessively modulate neuronal excitability, possibly resulting in unfavorable destabilization of neural function. It has been suggested that homeostatic regulation (i.e., metaplasticity) of neuronal networks avoids such destabilization. This construct proposes that the threshold for modification of neuronal excitability is based on previous post-synaptic activity, with an elevated threshold following high neuronal activity, but a reduced threshold following low neuronal activity (Bienenstock et al., 1982). Studies using non-invasive brain stimulation (NIBS) over human primary motor cortex (M1) support the utilization of such a mechanism (Karabanov et al., 2015). Furthermore, NIBS plasticity interventions have demonstrated an ability to interact homeostatically with motor learning, a process that is at least partially LTP-dependent (Ziemann et al., 2004; Jung and Ziemann, 2009). This has led to the exciting possibility of using " priming " NIBS to enhance the response to motor training following injury, or compensate for deficits in neuroplastic capacity. While relevant to many different populations, such an approach is of particular interest in older adults, where deficits in neuroplastic capacity (Barnes, 2003) and motor learning (Voelcker-Rehage et al., 2006) are well defined. However, it is currently unknown whether priming stimulation remains effective for potentiating the response to training in the elderly. In a recent paper within Neurobiology of Aging, Fujiyama and colleagues (Fujiyama et al., 2017) attempted to address this gap in knowledge by utilizing transcranial direct current stimulation (tDCS; a NIBS technique able to reliably induce LTP-and LTD-like plasticity in M1) to prime skill acquisition in young and older adults. The study utilized a visuomotor training task that involved moving a cursor on a computer screen through a range of targets by abducting the non-dominant index finger against a force transducer. Each target required a different level of force and target order was consistent across trials. During training, all subjects received 20 mins of excitatory anodal tDCS (atDCS). However, prior to training, half received 10 min of inhibitory cathodal tDCS (ctDCS), whereas the other half received 10 min of sham stimulation. Single-and paired-pulse TMS over the right M1 was used to quantify corticomotor excitability (motor evoked potential (MEP) area), and intracortical function (short-interval intracortical inhibition, SICI; intracortical facilitation, ICF), respectively. Changes …
منابع مشابه
بررسی اثر تحریکات الکتریکی مغز بر میزان یادگیری و مهارت حرکتی در افراد سالمند سالم: مروری نظام مند
Background and purpose: Aging is associated with brain changes and reduction in motor skill acquisi­tion that can limit its functional capacity. One of the effective interventions is using transcranial direct current stimulation (tDCS). The aim of this systematic review was to assess the effect of tDCS on learning and motor skill in healthy older adults. Materials and methods: A litera...
متن کاملTranscranial direct current stimulation (tDCS) priming of 1Hz repetitive transcranial magnetic stimulation (rTMS) modulates experimental pain thresholds.
Transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS) of primary motor cortex (M1) modulate cortical excitability. Both techniques have been demonstrated to modulate chronic pain and experimental pain thresholds, but with inconsistent effects. Preconditioning M1 with weak tDCS (1mA) standardizes the effects of subsequent stimulation via rTMS on l...
متن کاملCommentary: Cerebellar direct current stimulation enhances on-line motor skill acquisition through an effect on accuracy
The cerebellum is involved in the update of motor commands during error-dependent learning. Transcranial direct current stimulation (tDCS), a form of noninvasive brain stimulation, has been shown to increase cerebellar excitability and improve learning in motor adaptation tasks. Although cerebellar involvement has been clearly demonstrated in adaptation paradigms, a type of task that heavily re...
متن کاملFrontoparietal tDCS Benefits Visual Working Memory in Older Adults With Low Working Memory Capacity
Working memory (WM) permits maintenance of information over brief delays and is an essential executive function. Unfortunately, WM is subject to age-related decline. Some evidence supports the use of transcranial direct current stimulation (tDCS) to improve visual WM. A gap in knowledge is an understanding of the mechanism characterizing these tDCS linked effects. To address this gap, we compar...
متن کاملReversing motor adaptation deficits in the ageing brain using non‐invasive stimulation
KEY POINTS Healthy ageing in man is associated with a decline in motor adaptation. Transcranial direct current stimulation (TDCS) over the primary motor cortex (M1) or the lateral cerebellum can improve motor adaptation in young and older adults, but as yet no direct comparisons of TDCS effects exist between the two age groups and the two stimulation sites. TDCS over M1 enhanced the motor adapt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2017